

Advanced Therapeutics for T-cell Diseases

Cofounder, CSO | max@march.bio | mamonkin@bcm.edu

Executive Summary

Major hurdles related to T-cell targeting for cell therapy Significant challenges in safety and manufacturability

Targeting Normal T-cells CAR-T targeting of normal T-cells can lead to **severe immunodeficiency**

March platforms selectively eliminate cancerous and autoreactive T-cells

CAR-T Self targeting

- CAR-T can target themselves and compromise expansion
- Optimized CAR design and manufacturing methods enable streamlined production without complex gene editing

March overcomes challenges targeting pathogenic T-cells T-cell malignancies and T-cell autoimmune diseases

T-cell malignancies T-cell Lymphoma (TCL) & Leukemia (T-ALL)

MB-105: Strong safety and efficacy signal in Phase 1 academic trial for T-cell lymphoma and leukemia

- <u>Durable responses in T-cell lymphoma</u>
- Complete responses in <u>6/10 patients</u> across T-cell lymphoma and leukemia after CMC improvements
- Streamlined, simple manufacturing process
- Multi-site Phase 2 to initiate in 2024

Secondary assets expand leadership in T-cell malignancy space

Effective T-cell Targeting

T-cell Autoimmune Diseases Autoimmune colitis, MS, TID, others

MB-301: Targeting of pathogenic T-cells using Autoimmune Defense Receptors (ADRs)

- Selective elimination of activated pathogenic T-cells
- Targets alloreactive T cells that mediate immune rejection and graft-versus-host disease

MB-105: Comprehensive T-cell reset for T-cell auto-immune diseases

• Exploratory repositioning of lead asset

MB-105 Publications: Mamonkin et al. Blood. (2015); Mamonkin et al. Cancer Immunol Res. (2018); Hill, L. C., et al. Blood. (2023).;

RCH Ma et al., under review (<u>preprint</u>)

ADR Publications: Mo F, et al. Nature Biotechnology. (2021); Feiyan Mo, et al. Blood. (2023)

March Biosciences Pipeline

Impact in challenging T-cell indications and beyond

SARCH Exclusive license from Baylor College of Medicine and granted patents on core technologies MB-105 CLL/MCL to follow as secondary Phase 2 study after TCL Phase 2 initiation

March is rapidly executing a strategic development plan

Significant nondilutive capital and partnerships to enable development through major value inflection point

March Biosciences Team and Advisors

MB-105 CD5.CAR-T for T-cell (and select B-cell) malignancies

T-cell lymphoma patients face a dismal prognosis

Overall survival ~30-60%

(10-20% when relapsed/refractory)

T Cell Cancers

- Very few treatments mainly chemotherapy
- No curative targeted or immunotherapies
- Shared expression potential targets between cancer and normal T cells is limiting

T-cell lymphoma standard of care in 2024 remains dismal

1st line therapy is chemotherapy to HSCT, where possible

- 70% responses, median 2 years durability
- 50-70% of patients relapse or become refractory even with consolidating hematopoietic stem cell transplant

Salvage therapies are relatively non-specific with poor response rates

- Physician's choice to cycle through HDAC inhibitors, hypomethylating agent, anti-CD30 ADC, or additional chemo
- All lines have ~25-35% response rate

Very few emerging therapies

• Best in class candidate therapeutics range from 30-50% ORR

MB-105 (CD5.CAR-T) resist fratricide and eliminate malignant T cells

MAGENTA: Phase 1 investigator-initiated study of CD5.CAR-T in T-cell malignancies

	<u>Clinical Trial: NCT03081910</u>						
	INDICATION	 Adult and pediatric patients with CD5+ r/r TCL or T-ALL Heavily pre-treated patients – median 5 lines of prior therapy 					
<u>н</u> П	CLINICAL SITES	Houston Methodist (L. Hill), Texas Children's Hospital (R. Rouce)					
	DOSING	• Three dose levels (1x10 ⁷ > 5x10 ⁷ > 1x10 ⁸ CAR T cells/m ²)					

MB-105 drives complete responses in TCL and T-ALL patients Associated with enhanced cell persistence. Low CRS rates, no ICANs toxicities

Dose Level	Age/Sex	Disease Type	CRS	ICANS	Best Clinical Response			
Improved Manufacturing (70% ORR)								
Autologous (66% ORR)								
	65 F	T-LBL	-	-	SD			
	17 M	T-ALL	1	-	CR			
Z	70 F	T-LBL	-	-	CR			
5	42M	ATLL	-	-	PD			
	70M	PTCL	-	-	CR			
	45M	T-LBL	2	_	PR			
Donor-derived (75% ORR)								
	12 F	T-ALL	2	_	CR			
1	43 M	T-ALL	1	-	CR			
I	45 F	T-LBL	1	_	SD			
	17F	T-ALL	3	-	CR			

CAR-T persistence

Phase 2 study in T-cell lymphoma planned in 2024 Opportunity to build significant value through CMC & patient data consolidation

NONCONFIDENTIAL 13

CTMC+

Partnered with CTMC to rapidly industrialize manufacturing and produce product for Phase 2 studies <u>All major CMC changes for the life of the product to be completed prior to Phase 2 initiation</u>

Phase 2 study for CD5+ T-cell lymphoma

MB-301

Selective T-cell editing of pathogenic T-cells for autoimmune diseases

B-cell versus T-cell driven autoimmune diseases Current directly-targeted cell therapy approaches in autoimmunity exclusively target B-cell diseases

B-cell Driven Autoimmunity

- Systemic Lupus Erythematous (SLE)
- Sjögren's Syndrome
- ANCA-Associated Vasculitis
- Autoimmune Hemolytic Anemia
- Pemphigus Vulgaris
- Myasthenia gravis
- Rheumatoid Arthritis

T-cell Driven Autoimmunity

Mixed . Ulcerative Colitis

• Multiple

• Systemic

Sclerosis

Sclerosis

- Crohn's Disease
- \cdot Type 1 Diabetes
- Ankylosing spondylitis
- Dermatomyositis
- Adult Onset Still's Disease
- \cdot Graft-versus-host disease

"You can't target T-cells"

– Leading Biotech CSO Cell Therapy for Autoimmunity Conference 2023

Selective targeting pathogenic T cells

Developing applications of allo-defense receptors (ADR) in T cell driven autoimmunity

Engineered off-the-shelf therapeutic T cells resist host immune rejection

Feiyan Mo¹², Norihiro Watanabe¹, Mary K. McKenna¹, M. John Hicks³, Madhuwanti Srinivasan¹, Diogo Gomes-Silva¹, Erden Atilla¹, Tyler Smith¹, Pinar Ataca Atilla¹, Royce Ma¹⁴, David Quach¹, Helen E. Heslop¹², Malcolm K. Brenner¹² and Maksim Mamonkin^{12,3,4}

4-1BB ADR T cells are protected from immune rejection mediated by host CD8+ T and NK cells

IMMUNOBIOLOGY AND IMMUNOTHERAPY

Engineering T cells to suppress acute GVHD and leukemia relapse after allogeneic hematopoietic stem cell transplantation

Feiyan Mo,^{1,2} Norihiro Watanabe,¹ Kayleigh I. Omdahl,^{3,5} Phillip M. Burkhardt,^{1,6} Xiaoyun Ding,⁷ Eiko Hayase,⁸ Angela Panoskaltsis-Mortari,⁹ Robert R. Jenq,⁸ Helen E. Heslop,^{1,2} Leslie S. Kean,^{3,5} Malcolm K. Brenner,^{1,2,6} Victor Tkachev,^{3,5} and Maksim Mamonkin^{1,2,6,10}

OX40 ADR T cells suppress graft-versus-host disease by eliminating alloreactive CD4+ T cells

Series A will support Phase 2 study in T-cell lymphoma

Complements committed capital through validated value-inflection point

BIOSCIENCES

BIOSCIENCES